KVR GOVT. COLLEGE FOR WOMEN (AUTONOMOUS), KURNOOL

Re-Accredited by NAAC with Grade "A"

II Year B.Sc.-Physics: III Semester(Mathematics combination) CBCS: Syllabus –As per APSCHE w.e.f 2020-21 (w.e.f 2020-21 Admitted Batch)

Course-III: HEAT AND THERMODYNAMICS

Work load: 60hrs per semester

UNIT-I: Kinetic Theory of gases:

Kinetic Theory of gases-Introduction, Maxwell's law of distribution of molecular velocities (qualitative treatment only) and its experimental verification,Mean free path, Degrees of freedom, Principle of equipartition of energy (Qualitative ideas only), Transport phenomenon in ideal gases: viscosity, Thermal conductivity and diffusion of gases.

UNIT-II: Thermodynamics:

Introduction- Isothermal and Adiabatic processes, Reversible and irreversible processes, Carnot's engine and its efficiency, Carnot's theorem, Thermodynamic scale of temperature and its identity with perfect gas scale, Second law of thermodynamics: Kelvin's and Clausius statements, Principle of refrigeration, Entropy, Physical significance, Change in entropy in reversible and irreversible processes; Entropy and disorder-Entropy of Universe; Temperature-Entropy (T-S) diagram and its uses ; change of entropy when ice changes into steam.

UNIT-III: Thermodynamic Potentials and Maxwell's equations: (12hrs)

Thermodynamic potentials-Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy and their significance, Derivation of Maxwell's thermodynamic relations from thermodynamic potentials, Applications to (i) Clausius-Clayperon's equation (ii) Value of CP-CV (iii) Value of CP/CV (iv) Joule-Kelvin coefficient for ideal and Van der Waals' gases

UNIT-IV: Low temperature Physics:

Methods for producing very low temperatures, Joule Kelvin effect, Porous plug experiment, Joule expansion, Distinction between adiabatic and Joule Thomson expansion, Expression for Joule Thomson cooling, Liquefaction of air by Linde's method, Production of low temperatures by adiabatic demagnetization (qualitative), Practical applications of substances at low temperatures.

UNIT-V: Quantum theory of radiation:

Blackbody and its spectral energy distribution of black body radiation, Kirchoff's law, Wein's displacement law, Stefan-Boltzmann's law and Rayleigh-Jean's law (No derivations),

4 hrs/week

(12 hrs)

(12hrs)

(12hrs)

(12

hrs)

Planck's law of black body radiation-Derivation, Deduction of Wein's law and Rayleigh-Jean's law from Planck's law, Solar constant and its determination using Angstrom pyroheliometer, Estimation of surface temperature of Sun.

REFERENCE BOOKS:

- BSc Physics, Vol.2, Telugu Akademy, Hyderabad
- Thermodynamics, R.C.Srivastava, S.K.Saha&AbhayK.Jain, Eastern Economy Edition.
- Unified Physics Vol.2, Optics & Thermodynamics, Jai PrakashNath&Co.Ltd., Meerut
- Fundamentals of Physics. Halliday/Resnick/Walker.C. Wiley India Edition 2007
- Heat and Thermodynamics -N BrijLal, P Subrahmanyam, S.Chand& Co., 2012
- Heat and Thermodynamics- MS Yadav, Anmol Publications Pvt. Ltd, 2000
- University Physics, HD Young, MW Zemansky, FW Sears, Narosa Publishers, New Delhi

Practical Course-III: Heat and Thermodynamics

Work load: 30 hrs

2 hrs/week

Minimum of 6 experiments to be done and recorded

- 1. Specific heat of a liquid –Joule's calorimeter –Barton's radiation correction
- 2. Thermal conductivity of bad conductor-Lee's method
- 3. Thermal conductivity of rubber.
- 4. Measurement of Stefan's constant.
- 5. Specific heat of a liquid by applying Newton's law of cooling correction.
- 6. Heating efficiency of electrical kettle with varying voltages.
- 7. Thermoemf- thermo couple Potentiometer
- 8. Thermal behavior of an electric bulb (filament/torch light bulb)
- 9. Measurement of Stefan's constant- emissive method
- 10. Study of variation of resistance with temperature Thermistor.

.....

KVR GOVT. COLLEGE FOR WOMEN (AUTONOMOUS), KURNOOL

Re-Accredited by NAAC with Grade "A"

II Year B.Sc.-Physics: IV Semester (Mathematics combination) CBCS: Syllabus – As per APSCHE w.e.f 2020-21 (w.e.f 2020-21 Admitted Batch)

Course-IV: ELECTRICITY, MAGNETISM AND ELECTRONICS

Work load: 60 hrs per semester

UNIT-I

1. Electrostatics: (6hrs)

Gauss's law-Statement and its proof, Electric field intensity due to (i) uniformly charged solid sphere and (ii) an infinite conducting sheet of charge, Deduction of Coulomb's law from Gauss law, Electrical potential-Equipotential surfaces, Potential due to a (i) dipole (ii)uniformly charged sphere

2.Dielectrics:

Dielectrics-Polar and Non-polar dielectrics- Effect of electric field on dielectrics, Dielectric strength, Capacitance of a parallel plate condenser with dielectric slab between the plates, Electric displacement D, electric polarization P,Relation between D, E and P, Dielectric constant and electric susceptibility.

UNIT-II

3.Magnetostatics:

Biot-Savart's law and its applications: (i) circular loop and (ii) solenoid, Divergence and curl of magnetic field, Ampere's Circuital Law and its application to Solenoid, Hall effect, determination of Hall coefficient and applications.

4.Electromagnetic Induction:

Faraday's laws of electromagnetic induction, Lenz's law, Self induction and Mutual induction, Self inductance of a long solenoid, Mutual inductance of two coils, Energy stored in magnetic field, Eddy currents and Electromagnetic damping

UNIT-III

5.Alternating currents:

Alternating current - Relation between current and voltage in LR and CR circuits, Phasor and Vector diagrams, LCR series and parallel resonant circuit, Q -factor, Power in ac circuits, Power factor.

(6 hrs)

(6 hrs)

4 hrs/week

(6 hrs)

(6 hrs)

6.Electromagnetic waves-Maxwell's equations:

Idea of displacement current, Maxwell's equations-Derivation, Maxwell's wave equation (with derivation), Transverse nature of electromagnetic waves, Poynting theorem (Statement and proof)

UNIT-IV

7. Basic Electronic devices:

PN junction diode, Zenerdiode and Light Emitting Diode (LED) and their I-V characteristics, Zener diode as a regulator- Transistors and its operation, CB, CE and CC configurations, Input and output characteristicsofa transistor in CE mode, Relation between alpha, beta and gamma; Hybrid parameters, Determination of hybrid parameters from transistor characteristics; Transistor as an amplifier.

UNIT-V:

8. Digital Electronics:

Number systems, Conversion of binary to decimal system and vice versa, Binary addition & Binary subtraction (1's and 2's complement methods), Laws of Boolean algebra, DeMorgan's laws-Statements and Proofs, Basic logic gates, NAND and NOR as universal gates, Exclusive-OR gate, Half adder and Full adder circuits.

REFERENCE BOOKS

- ✤ BSc Physics, Vol.3, Telugu Akademy, Hyderabad.
- Electricity and Magnetism, D.N. Vasudeva. S. Chand & Co.
- Electricity and Magnetism, B.D.Duggal and C.L.Chhabra. Shobanlal& Co.
- Electricity, Magnetism with Electronics, K.K.Tewari, R.Chand& Co.,
- Electricity and Magnetism, R.Murugeshan, S. Chand & Co.
- ✤ Principles of Electronics, V.K. Mehta, S.Chand& Co.,
- ♦ Digital Principles and Applications, A.P. Malvino and D.P.Leach, McGrawHill Edition.

Practical Course IV: Electricity, Magnetism and Electronics

Work load: 30 hrs

2 hrs/week

- Minimum of 6 experiments to be done and recorded
 - 1. Figure of merit of a moving coil galvanometer.
 - 2. LCR circuit series/parallel resonance, Q factor.
 - 3. Determination of ac-frequency Sonometer.

(12 hrs)

(6 hrs)

(12 hrs)

- 4. Verification of Kirchoff's laws and Maximum Power Transfer theorem.
- 5. Field along the axis of a circular coil carrying current-Stewart & Gee's apparatus.
- 6. PN Junction Diode Characteristics
- 7. Zener Diode -V-I Characteristics
- 8. Zener Diode as a voltage regulator
- 9. Transistor CE Characteristics- Determination of hybrid parameters
- 10. Logic Gates- OR, AND, NOT and NAND gates. Verification of Truth Tables.
- 11. Verification of De Morgan's Theorems.
- 12. Construction of Half adder and Full adders-Verification of truth tables

II Year B.Sc.-Physics: IV Semester (Mathematics combination) CBCS: Syllabus –As per APSCHE w.e.f 2020-21 (w.e.f 2020-21 Admitted Batch)

Course V: MODERN PHYSICS

Work load:60hrs per semester

4 hrs/week

(12 hrs)

UNIT-I:

1. Atomic and Molecular Physics:(12 hrs)

Vector atom model and Stern-Gerlach experiment, Quantum numbers associated with it, Angular momentum of the atom, Coupling schemes, Spectral terms and spectral notations, Selection rules, Intensity rules, Fine structure of Sodium D-lines, Zeeman effect,Experimental arrangement to study Zeeman effect;Raman effect, Characteristics of Raman effect,

Experimental arrangement to study Raman effect, Quantum theory of Raman effect, Applications of Raman effect.

UNIT-II:

2. Matter waves&Uncertainty Principle:

Matter waves, de Broglie's hypothesis, Wave length of matter waves, Properties of matter waves, Davisson and Germer's experiment, Phase and group velocities, Heisenberg's uncertainty principle for position and momentum& energy and time, Illustration of uncertainty principle using diffraction of beam of electrons (Diffraction by a single slit)and photons(Gamma ray microscope),Bohr's principle of complementarity.

UNIT-III:

3. Quantum (Wave) Mechanics:(12 hrs)

Basic postulates of quantum mechanics, Schrodinger time independent and time dependent wave equations-Derivations, Physical interpretation of wave function, Eigen functions, Eigen values, Application of Schrodinger wave equation to (i) one dimensional potential box of infinite height(InfinitePotential Well) and (ii) one dimensional harmonic oscillator

UNIT-IV:

4. Nuclear Physics:(12 hrs)

Nuclear Structure:General Properties of Nuclei, Mass defect, Binding energy; *Nuclear forces*: Characteristics of nuclear forces- Yukawa's meson theory; *Nuclear Models*: Liquid drop model, The Shell model, Magic numbers; *Nuclear Radiation detectors*: G.M. Counter, Cloud chamber, Solid State detector; *Elementary Particles*: Elementary Particles and their classification

UNIT-V:

5. Nano materials:(7hrs)

Nanomaterials – Introduction, Electron confinement, Size effect, Surface to volume ratio, Classification of nano materials– (0D, 1D, 2D); Quantum dots, Nano wires, Fullerene, CNT, Graphene(Mention of structures and properties),Distinct properties of nano materials (Mentionmechanical,optical, electrical, and magnetic properties); Mention of applications of nano materials: (Fuel cells,Phosphors for HD TV, Next Generation Computer chips, elimination of pollutants, sensors)

6. Superconductivity:

(5 hrs)

Introduction to Superconductivity, Experimental results-critical temperature, critical magnetic field, Meissner effect, Isotope effect, Type I and Type II superconductors, BCS theory (elementary ideas only), Applications of superconductors

REFERENCE BOOKS

- Sc Physics, Vol.4, Telugu Akademy, Hyderabad
- ♦ Atomic Physics by J.B. Rajam; S.Chand& Co.,
- Modern Physics by R. Murugeshan and Kiruthiga Siva Prasath. S. Chand & Co.
- Concepts of Modern Physics by Arthur Beiser. Tata McGraw-Hill Edition.
- Nuclear Physics, D.C.Tayal, Himalaya Publishing House.
- S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publ.Co.)
- K.K.Chattopadhyay&A.N.Banerjee, Introd.to Nanoscience and Technology(PHI LearningPriv.Limited).
- Nano materials, A K Bandopadhyay. New Age International Pvt Ltd (2007)
- Textbook of Nanoscience and Nanotechnology, BS Murthy, P Shankar, Baldev Raj,BB Rath

and J Murday-Universities Press-IIM

Practical Course V:Modern Physics

Work load: 30 hrs

2 hrs/week

Minimum of 6 experiments to be done and recorded

- 1. e/m of an electron by Thomson method.
- 2. Determination of Planck's Constant (photocell).
- 3. Verification of inverse square law of light using photovoltaic cell.
- 4. Determination of the Planck's constant using LEDs of at least 4 different colours.
- 5. Determination of work function of material of filament of directly heated vacuum diode.
- 6. Study of absorption of α -rays.
- 7. Study of absorption of β -rays.
- 8. Determination of Range of β -particles.
- 9. Determination of M & H.
- 10. Analysis of powder X-ray diffraction pattern to determine properties of crystals.
- 11. Energy gap of a semiconductor using junction diode.
- 12. Energy gap of a semiconductor using thermistor
- 13. GM counter characteristics
